City Chlor "Bio-washing machine and Bioprocess monitoring"

Name Albert de Vries, Msc

Company City of Utrecht

Name Shakti Lieten, Ir.

Company Bioclear

Date 16 May 2013

Presentation

- 1. Urban area of Utrecht
- 2. CSM Bio-washing machine
- 3. Results of the different lines of research
- 4. Integrated results
- 5. Conclusions
- 6. Questions?

Utrecht, overview contamination and monitoring network Bio-washing machine

- Expert panel: steer on content and interpretation of the different lines of research
- Coordinate and participate on integration of the lines of research
- → INTEGRATED REPORT of the CSM Bio-washing machine

City Research aspect : Flux

Research set up: City Research Set up. Chlor Flux measurements

Flux measurements

Geoflo: direction and flowrate

Sorbicell: time-average conc

Sorbiflux: direct flux measurement PFM: direct flux measurement

Results: Mass flux (J in mg/m²/day) and M_d (in mg/day)

Depth	Plane	J _{PCE}	M _{PCE}	J _{TCE}	M _{TCE}	J _{DCE}	M _{DCE}	J _{vc}	M _{vc}
(m-gl)	(m²)								
Amsterdamsestra	atweg								
6-12	150 (6 x 25)	472	70,800	116	17,400	496	74,400	5.5	825
12-20	200 (8 x 25)	0.3	60	0.15	30	4.1	820	1.8	360
Total plane (m ²)	350								
Total mass			70,860		17,430		75,220		1,185
discharge									
(mg/day)		_							
Nachtegaalstraat									
5-8	120 (3 x 40)	2.9	348	3.4	408	7.1	852	4.4	528
8-12	160 (4 X 40)	0.5	80	0.8	128	8.7	1,392	6.8	1,088
12-15	120 (3 X 40)	0	0	0		5.6	672	4.4	528
Total plane (m ²)	400								
Total mass			428		536		2,916		2,144
discharge									
(mg/day)									

Research aspect: Biodegradation capacity

Research set up: biodegradation capacity

- 1. Lab degradation tests
- 2. Molecular analyses
- 3. In-situ measurements

Results Biodegradation capacit

Legenda

- micro aerofie
- micro aerofiel / reductieve dechlorering
- reductieve dechlorering
- niet aangetroffen, wel geanalyseerd
- niet op geanalyseerd

d		(LI)							
į	Project: CityChlor								
Į	Opdrachtgever: Gemeente Utrecht								
ì	Omschrijving: locaties peilbuizen en aangetroffen biocapaciteit								
		ΔЗ	Projectcode: 20103770	Datum: 4-4-2013					
	bioclear	AS	Schaal: 1:10.000						

302130362015 86 (Van Asch van Wijckskade 20) CU14 (Cremerstraat/ M.P. Lindostraat) NF4 (Nachtegaalstraal CU25 (Annastraat) 106 (Kerkstraat 2H midden vd weg RogHK11 (Leidseweg) CU28 (Spoorstraat/ stationdwarstraat) gra306 (Haverstraat) CU30 (Laan van Puntenburg / Moreelsepark) 61 (Leidseweg 90) 67 (Zwaansteeg 17) 107bis 309 300 105 53 (Geertekerkhof 22) 52 (Lange Nieuwstraat 119)

Conclusions – Flux & degradation

- Estimated mass flux Utrecht sites varies between
 - Total M_d= 165 g/day (Amsterdamsestraatweg) over 350 m² surface
 - Total M_d= 6.0 g/day (Nachtegaalstraat) over 400 m² surface
- Biology
 - Both reductive as well as oxidative processes occur
 - Reductive degradation potential low in plume, higher in source
 - Low degradation potential needed for bio-washing machine approach

Research aspect: Vapour intrusion & ATES

Indoor air risk reduction:

- (50 cm) clean groundwater → order of magnitude
- Aerobic degradation in vadose zone

Research aspect: 3D model subsurface

3D transport: pathlines starting at different depths

Characteristics - long term ATES

Groundwater (> 20 years ATES):

- Groundwater quality: homogeneous character
- Almost no CIS present & continuously slow decrease of VC

Biology:

- Low amounts of bacteria for reductive degradation (DHC:10 200 gene copies/ml):
 > 65% of the samples
- Bacteria for reductive and oxidative proces can be found in the same soil layer
- → stimulating effect of ATES or only homogenization?

Integration of results & Bio-washing machine

Modified CSM of the Bio-washing machine:

Important aspects (altered view on situation):

- clean groundwater layer enormously reduces risk of vapour intrusion
- confining layer between 1st and 2nd aquifer locally absent
- two degration processes are important. "New" one is quicker.

Recommandations

Contaminant flux

Bio-washing machine area

Plume areas

- Upscale of the total area (in progress)
- Monitoring Bio-washing machine (ADAPT):
 - Dynamic area: overall biodegradation, deep water concentrations and flux measurements
 - Peripheral area: flux at source zones and degradation capacity in plumes

City Acknowledgements

www.citychlor.eu