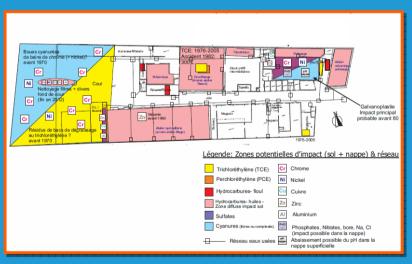
City FINAL CONFERENCE, Chlor May 16th 2013, Ghent, Belgium

PILOT PROJECT « ILE DE FRANCE »

- Direct Push Technologies (DPT)
- Passive Samplers for groundwater sampling
- Soil-gas well designs and soil-gas sampling techniques
- Natural Attenuation

Marie Lemoine, Olivier Bour, Guillaume Gay, Francis Guillot, Corinne Hulot, Julien Michel, Pauline Molina, Fabrice Quiot, Frabrice Richez, Amadou Thiam


Cition PILOT PROJECT « ILE DE

Pilot FRANGEneral presentation

- hardware manufacturing
 - in the earth of a city of **50.000 citizens**,
 - in operation since 1930,
 - in an area of 6700 m²

- activities development over time, at different scales
 - electroplating (from 1930 to 2006),
 - → foundry,
 - degreasing (chlorinated solvents),
 - ► Scouring (sulfuric acid),
 - screwing,
 - **⇒** silkscreen printing (small scale),
 - → storage area (up to 1970),
 - **→** ...

INERIS

Pilot FRANCEneral presentation

- Impacts of degreasing activities
 - use of chlorinated solvents
 - PCE (1t/year from 1930 to 1980; 10t/year from 1980 to 2003)
 - TCE, (about 10t/year since 2003)

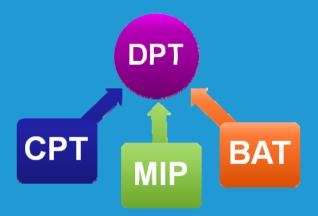
Historical Study

INERIS

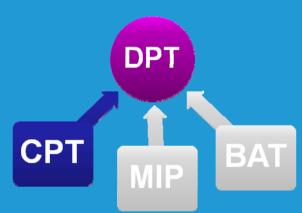
soil and groundwater contamination on site

Cition PILOT PROJECT « ILE DE Technique Sefection

... tools for better site characterization


- Direct Push Technologies for screening
- Passive Samplers for groundwater quality measurement
- Soil-gas sampling installations and soil-gas sampling techniques for multi-depth sampling
- Soil-gas and ambient air sampling for data acquisition in the frame of transfer modeling

- measurement and sampling techniques of soil, soil gas and groundwater, pushing steel rods into the ground (unconsolidated soils, sediments)
 - in-situ analysis of contaminants
 - geophysical data
 - continuous logging of subsurface conditions



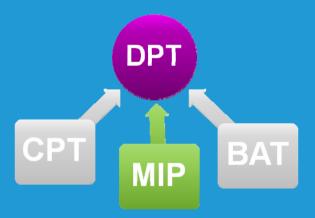
cost effective techniques
3D conceptual model construction

Sition PILOT PROJECT « ILE DE DirecFRANCEmnology

- measurement and sampling techniques of soil, soil gas and groundwater, pushing steel rods into the ground (unconsolidated soils, sediments)
 - in-situ analysis of contaminants
 - geophysical data
 - continuous logging of subsurface conditions

cost effective techniques
3D conceptual model construction

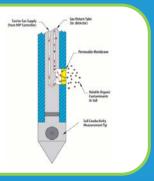
Cone Penetrometer Test (CPT)


determine soil geotechnical engineering properties and soil stratigraphy

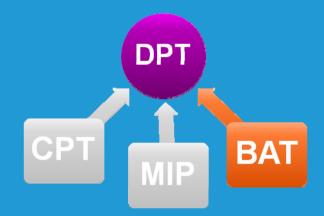
- √ total penetration resistance
- ✓ friction generated by the rod string

Sition PILOT PROJECT « ILE DE DirecFRANCEmhology

- measurement and sampling techniques of soil, soil gas and groundwater, pushing steel rods into the ground (unconsolidated soils, sediments)
 - in-situ analysis of contaminants
 - geophysical data
 - continuous logging of subsurface conditions



Membrane Interface Probe (MIP)


Logs VOC contaminants (chlorinated solvents, BTEX) with depth

- √ heated semi-permeable membrane diffuses VOCs compounds
- √ several detectors used (FID, PID and DELCD)

Sition PILOT PROJECT « ILE DE DirecFRANCEmnology

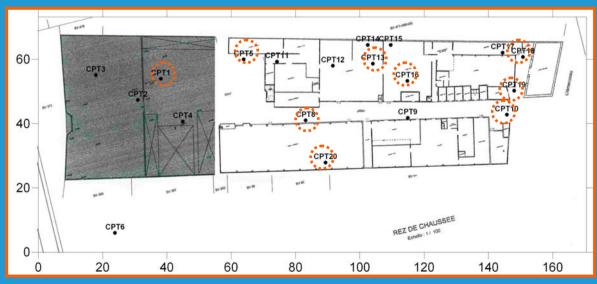
- measurement and sampling techniques of soil, soil gas and groundwater, pushing steel rods into the ground (unconsolidated soils, sediments)
 - in-situ analysis of contaminants
 - geophysical data
 - continuous logging of subsurface conditions

cost effective techniques
3D conceptual model construction

BAT Sampler

groundwater sampling at a specific depth

- ✓ screened interval opened at the measurement depth
- ✓ groundwater sampled in a sample tube supplied with a double ended injection needle


Cition PILOT PROJECT « ILE DE

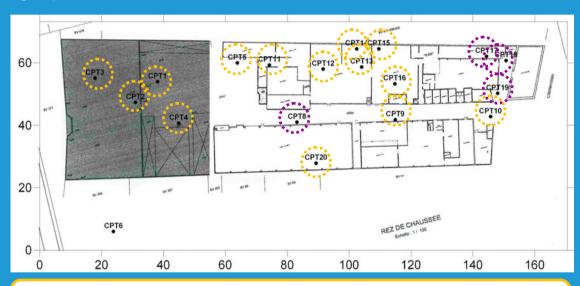
• Direct RANGE mology

- Direct Push investigations carried out
 - lithology with depth information
 - contamination information

Measurement:

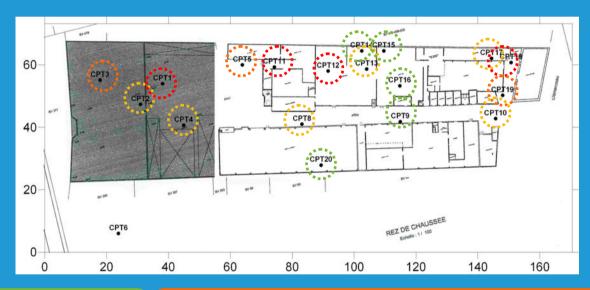
Step1: CPT/MIP measurements at 19 locations, close to the sources of pollution (indoor and outdoor), until 4.2 to 7.6 meters deep

Step2: BAT Sampling at different contaminated areas (2 or 3 different depths)


Cition PILOT PROJECT « ILE DE • Direct RANGE mology

b Direct Push investigations: CPT/MIP results

Two main lithologic profiles:

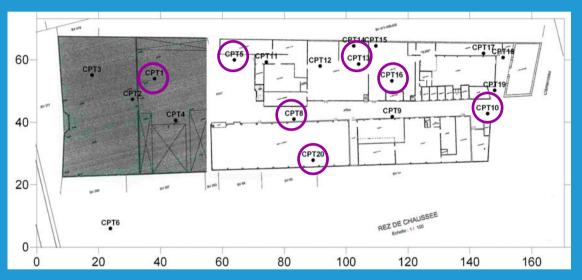

embankment not detected/identified

- → from 1 to 4 meters deep: **peat/clay**
- → from 4 to 6 meters deep: silty clay/sand/gravels
- → from 1 to 5 meters deep: **peat/clay**
- → from 5 to 6 meters deep: silty clay/sand/gravels

Cition PILOT PROJECT « ILE DE DirecFRANCEmology

- **b** Direct Push investigations: CPT/MIP results
 - Different levels of contaminations identified with DELCD:

- → no contaminant detected (TCE equivalent)
- → from 1 to 10 mg/L (TCE equivalent)
- → located in the saturated zone (> 3 m)

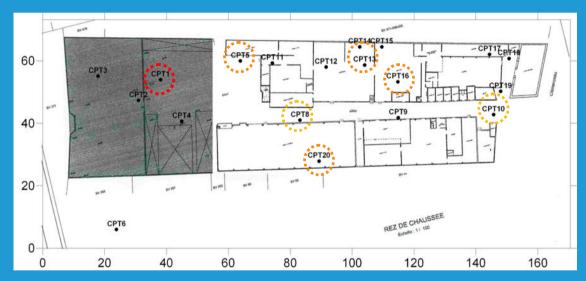

- → from 0.3 to 1 mg/L (TCE equivalent)
- → located in the saturated zone (> 3 m)
- → from 1 to 100 mg/L (TCE equivalent)
- → located in the vadose and saturated zones

Cition PILOT PROJECT « ILE DE DirecFRANCEmology

- **b** Direct Push investigations: BAT Sampling
 - Different levels of contaminations identified :

Two sampling depths:

- **3.6-3.7** meters deep
- **4.6-4.7** meters deep



Cition PILOT PROJECT « ILE DE DirecFRANCEnhology

- **b** Direct Push investigations: BAT Sampling
 - Different levels of contaminations identified :

Two sampling depths:

- 3.6-3.7 meters deep
- **4.6-4.7** meters deep

→ from 0.4 to 0.9 mg/L

→ from 2 to 4 mg/L

→ from 20 to 40 mg/L

Cition PILOT PROJECT « ILE DE DirecFRANCEmology

b Direct Push investigations:

Main conclusions:

- → confirm historical study conclusions but also identify other contaminated zones
- → some specific zones cannot be investigated
- → BAT Sampler results confirmed MIP results concerning VOCs detection

VERY HELPFUL FOR SITE SCREENING

Sition PILOT PROJECT « ILE DE Grounfalle Ground Gro

- Groundwater monitoring
 - using on site groundwater wells
 - conventional sampling (pumping method)

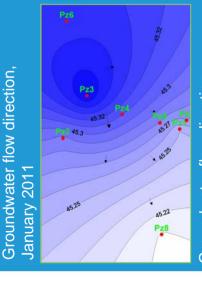
Precautions

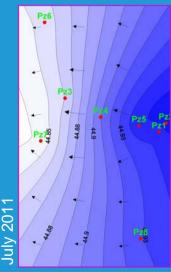
- ✓ for each sampling event, various parameters measured:
 - water level
 - pH, conductivity, temperature, redox potential (with depth)
 - weather conditions

Ground PILOT PROJECT « ILE DE Ground Ground

- Groundwater flow direction

 - conventional sampling (pumping method) on site


Information provided


- ✓ groundwater flow direction
- contaminants concentration ranges on site

Three more groundwater wells implemented in the frame of CityChlor

Ground PILOT PROJECT « ILE DE Ground Ground

6 Comparison of passive samplers and conventional sampling method

Passive Diffusion Bag

12 sampling campaigns
3 weeks exposure

DIFFUSIVE SAMPLERS

Dialysis Membrane Sampler

2 sampling campaigns
2 weeks exposure

Dosimeter

4 sampling campaigns 6-12 weeks exposure

Gore Module®

4 sampling campaigns 30 minutes

INTEGRATIVE SAMPLERS

- → comparison based on **chlorinated solvents concentrations** (PCE, TCE, DCE, VC)
- exposure duration according to the passive sampler
- ► 21 sampling campaigns carried out, between September 2011 and January 2013

Comparison of passive samplers and conventional sampling method

→ using four wells (short screened interval: 1.5 m)

passive samplers set up in the middle of each

screened interval

Precautions

✓ For each sampling event, various parameters measured:

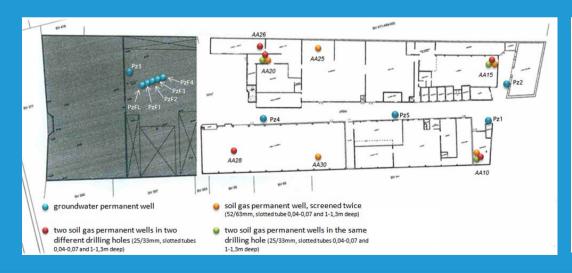
- water level
- pH, conductivity, temperature, redox potential (with depth)
- weather conditions (few days before and few days after the sampling event)

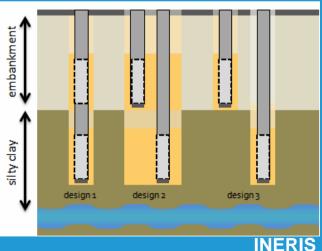
INERIS

Cition PILOT PROJECT « ILE DE Ground Grand Grand

- Comparison of passive samplers and conventional sampling method
 - → using four wells (short screened interval: 1.5 m)
 - passive samplers set up in the middle of each screened interval

Main conclusions:

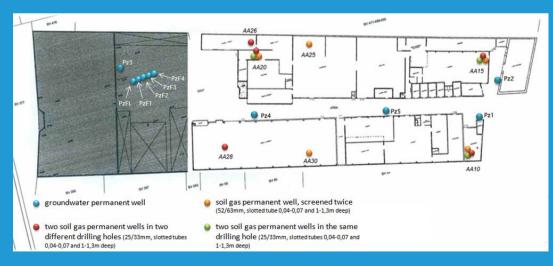

- concentrations measured with passive samplers and conventional sampling are of the same order of magnitude and comparable (PDB, Dialysis Membrane, Gore® Sorber Module)
- → concentrations measured with ceramic dosimeters not always comparable
- → good reproducibility on the results (PDB, Dialysis Membrane, Gore® Sorber Module)



EFFICIENT FOR GROUNDWATER QUALITY MEASUREMENT

Cition PILOT PROJECT « ILE DE

- Soil-Gasanvestigations
 - Soil-gas installations and soil-gas sampling
 - → using thirteen wells (three different designs, screened interval located in embankment (0.3-0.7 meters deep) and silty clay (1.0-1.3 meters deep)



Cition PILOT PROJECT « ILE DE

Soil-Gasanvestigations

- Soil-gas installations and soil-gas sampling
 - → using thirteen wells (three different designs, screened interval located in embankment (0.3-0.7 meters deep) and silty clay (1.0-1.3 meters deep)
 - → 5 active sampling campaigns using sorbent tubes (activated charcoal)

INFRIS

Soil-Gasanoes So

- Soil-gas installations and soil-gas sampling
 - → using thirteen wells (three different designs, screened interval located in embankment (0.3-0.7 meters deep) and silty clay (1.0-1.3 meters deep)
 - → 5 active sampling campaigns using sorbent tubes (activated charcoal)

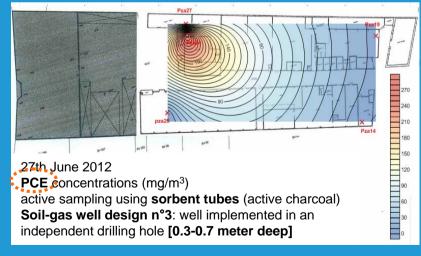
Precautions

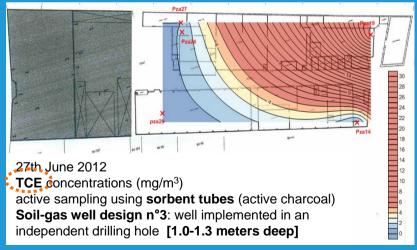
- ✓ for each sampling event, various parameters measured:
 - soil-gas well purge
 - PID measurements before and after sampling
 - temperature and humidity
 - weather conditions (pressure, temperature, raining events...)

Tests carried out

- ✓ purge monitoring with PID
- ✓ active soil-gas sampling in the three different soil-gas well designs
- ✓ recirculation tests

detailed in « soil-gas characterization » presentation


Soil-Gasanos Cition PILOT PROJECT « ILE DE Soil-Gasanos


- Soil-gas installations and soil-gas sampling
 - → using thirteen wells (three different designs, screened interval located in embankment (0.3-0.7 meters deep) and silty clay (1.0-1.3 meters deep)
 - → 5 active sampling campaigns using sorbent tubes (activated charcoal)

Information provided

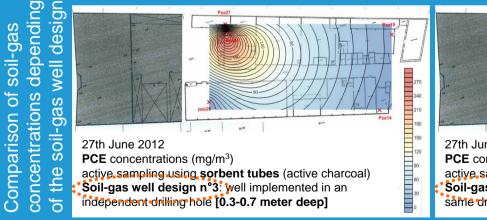
✓ soil-gas concentrations (PCE, TCE, cis-DCE, trans-DCE, Vinyl Chloride, BTEX) at two different depths (0.3-0.7 meters deep and 1.0-1.3 meters deep)

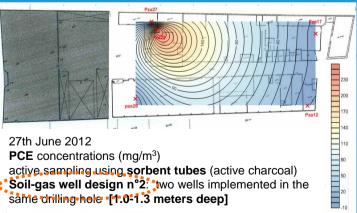
Comparison of soil-gas concentrations depending ofthe targeted compound

Soil-Gasanos Soil-Gasanos

- Soil-gas installations and soil-gas sampling
 - → using thirteen wells (three different designs, screened interval located in embankment (0.3-0.7 meters deep) and silty clay (1.0-1.3 meters deep)
 - → 5 active sampling campaigns using sorbent tubes (active charcoal)

Information provided

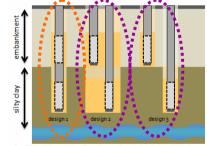

- ✓ soil-gas concentrations (PCE, TCE, cis-DCE, trans-DCE, Vinyl Chloride, BTEX) at two different depths (0.3-0.7 meters deep and 1.0-1.3 meters deep)
- ✓ get feedback on the soil gas well design implemented
 - by comparing the concentrations measured
 - carring out other tests (purge monitoring, recirculation test...)
 - detailed in « soil-gas characterization » presentation
- ✓ providing data for modeling gas transfer from soil to indoor air


Soil-Easth Stigations

- Soil-gas installations and soil-gas sampling
 - → using thirteen wells (three different designs, screened interval located in embankment (0.3-0.7 meters deep) and silty clay (1.0-1.3 meters deep)
 - → 5 active sampling campaigns using sorbent tubes (activated charcoal)

Information provided

- ✓ soil-gas concentrations (PCE, TCE, cis-DCE, trans-DCE, Vinyl Chloride, BTEX) at two different depths (0.3-0.7 meters deep and 1.0-1.3 meters deep)
- ✓ get feeback on the influence of soil gas well design



Soil-Easth Stigations

- Soil-gas installations and soil-gas sampling
 - → using thirteen wells (three different designs, screened interval located in embankment (0.3-0.7 meters deep) and silty clay (1.0-1.3 meters deep)
 - → 5 active sampling campaigns using sorbent tubes (active charcoal)

Main conclusions:

- → soil-gas well designs n°2 and n°3 provide similar results
- → twice screened interval (design n°1) provides higher concentrations in embankment

- DESIGNS N°2 AND 3 SEEM TO BE MORE ACCURATE FOR MULTI-LEVEL SOIL-GAS SAMPLING
- DESIGN N°1 COULD BE USED ONLY IF IMPERMEABILITY TESTS AR WELL- CARRIED OUT (PACKER PERFORMANCES)
 - → soil-gas sampling technique should be adapted depending on site specificities and contaminants

Cition PILOT PROJECT « ILE DE Ambier ANGEStigations

- Soil-gas installations and soil-gas sampling
 - using 7 sampling locations (measurements at 0.1 and 0.5 meter high)
 - → 5 active sampling campaigns using sorbent tubes (active charcoal)

Information provided

✓ providing data for modeling gas transfer from soil to indoor air

Cition PILOT PROJECT « ILE DE Conclusión File main investigations

Direct Push Technologies: CPT/MIP and BATSampler

- DPT investigations very helpful to get information on lithology as well as to identify high-contaminated zones (soil, soil-gas and groundwater) in the frame of site screening
- good correlation observed between CPT/MIP and BATSampler results
- investigations confirm the

Groundwater investigations

- passive samplers are relevant for groundwater monitoring
- recommendations have been emitted concerning their use
- investigations help to increase passive samplers market acceptance

Soil-gas investigations

- soil-gas multi-depth could be carried out using different soil-gas well designs (in two nested wells or in two soil-gas wells installed in two different but similar boreholes)
- further investigations and tests should be carried out to provide complementary data (for recommendations)

Pilot FRANCEts Pilot FRANCEts

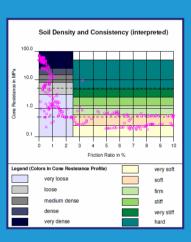
Pilot site investigations

→ Pilot Project "Ile de France", use of tools for groundwater, soil, soilgas and indoor air characterization, in the frame of chlorinated solvent pollution in urban areas, Julien Michel, Marie Lemoine

Soil-gas investigations

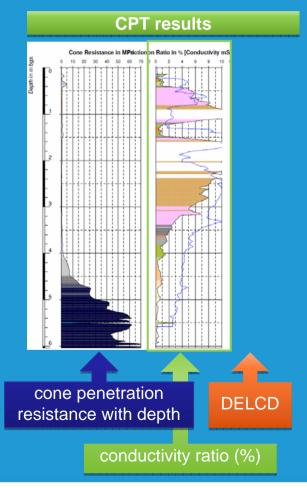
- → Soil-gas monitoring: soil-gas sampling installations and soil-gas sampling techniques, Marie Lemoine, Olivier Bour, Corinne Hulot
- → Attenuation of Vinyl Chloride in the vadose zone, Olivier Bour

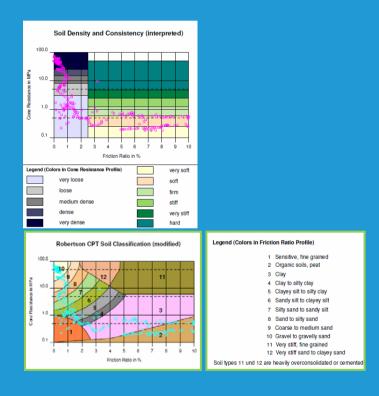
Groundwater investigations


- Passive samplers as an innovative way for groundwater quality monitoring, Julien Michel
- Gas Transfer from soil to indoor air
 - Models for predicting transfers to indoor air, Guillaume Gay, Amadou Thiam

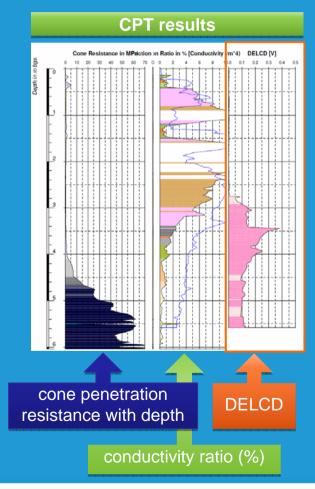
Cition PILOT PROJECT « ILE DE DirecFRANCEnhology

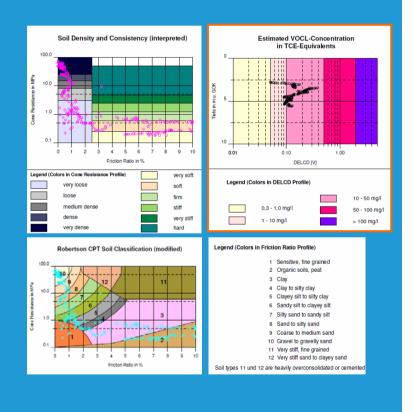
b Direct Push investigations: CPT/MIP results


Cone Resistance in MPriction 1 1 2 2 3 40 50 60 70 0


cone penetration resistance with depth

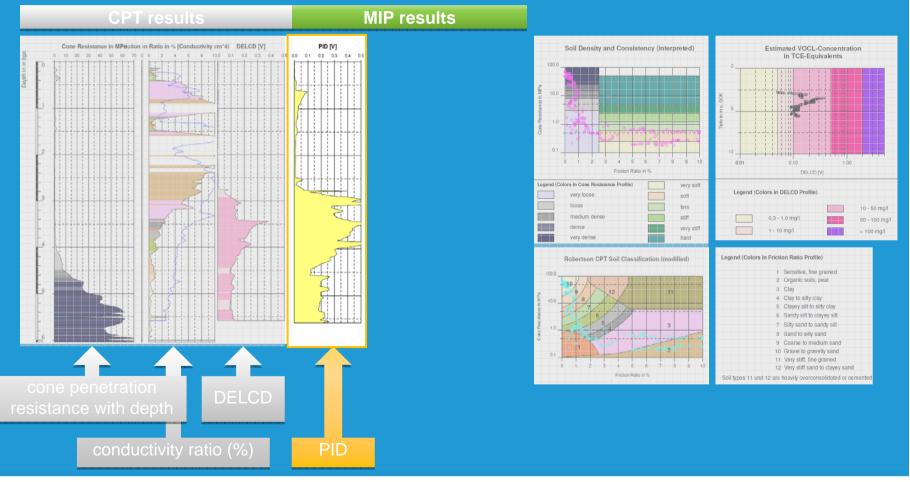
Cition PILOT PROJECT « ILE DE DirecFRANFE hinology


b Direct Push investigations: CPT/MIP results

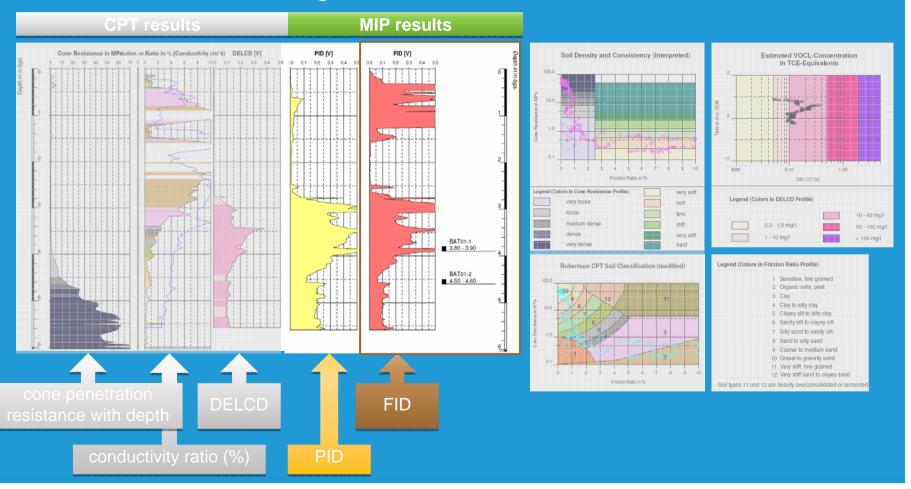


Cition PILOT PROJECT « ILE DE DirecFRANCEnhology

Direct Push investigations: CPT/MIP results



City PILOT PROJECT « ILE DE ERANCE.»


• Direct RANGE mology

b Direct Push investigations: CPT/MIP results

Cition PILOT PROJECT « ILE DE DirecFRANCE nhology

Direct Push investigations: CPT/MIP results

