

Integral Pumping Tests

16.05.2013

Sandra Vasin

State Capital of Stuttgart

Department for Environmental Protection

- 1. Challenge
- 2. Approach
- 3. Application
- 4. Case Study
- 5. Conclusions

- 1. Challenge
- 2. Approach
- 3. Application
- 4. Case Study
- 5. Conclusions

In the practice, localization of a source of contamination is in many cases hardly feasible.

there are two main approaches for assessment of GW pollution:

one point measurement leads to difficulties to reliable locate and capture the plume

integral measurement considers the temporal and spatial influence from one or more pumped wells (spatial integral **GW** investigation)

Spatial integral GW investigation allows the assessment of key contaminants in the entire area of consideration.

- pollution originates from several sources
- goal is to trace the pollution plume along the transport pathways back to the sources of pollution

Z,

Integral pumping test (IPT) is one example of spatial integral GW investigations.

- IPT is long-term pumping test with systematic analysis of contaminant concentration in the pumped water
- basic concept is to capture the whole contaminated plume by one or several measurement points lined in the control plane
- control plane shall:
 - 1. be downstream of the investigated site,
 - 2. cover a total width of GW stream, and
 - 3. be perpendicular to GW flow direction

The total pollutant plume emitted from a potentially contaminated site is captured.

- multiple concentration measurements are performed
- total flow rate at control plane is estimated
- the possible spatial distribution of contaminants is backward calculated
- the method align the plume, but not the position (left or right)

- 1. Challenge
- 2. Approach
- 3. Application
- 4. Case Study
- 5. Conclusions

The IPT approach is based on the increase of the capture zone during a pumping test.

- pumped discharge (Q_D) is constant
- quasi steady state is assumed
- mixed concentrations (C_p) are measured

By applying IPT the total contamination load through defined control plane is determined.

determination of concentration distribution and total load:

- average concentration
- concentration distribution
- total contamination load

The four typical concentration curves can be recognized based on their plume geometry and location.

examples of concentration curves

time

- IPT with only one measurement point can lead to difficulties
 - nore measurement points

Т

More pumping wells are necessary to capture the plume.

- GW well 1 → out of the plume
- GW well 2 \rightarrow reaches the plume after some time, C_p are lower than in reality
- GW well 3 → at the beginning pumping of contaminated water

- 1. Challenge
- 2. Approach
- 3. Application
- 4. Case Study
- 5. Conclusions

3. Application

IPTs require detailed planning, collection of data and a comprehensive conceptual model.

planning and performance of IPTs

objectives and data collection	conceptual model	planning of IPT	execution of IPT	evaluation of IPT
 definition of project area and boundaries 	understanding of the system	 definition of control planes 	measuring of water levels	 analytical or numerical tools
aquifer parameters	• system properties	 hydraulic planning: pumping rate and 	 continuous pumping rate 	
• pumping time, rate	strata profiles, aquifer geometry	time, number of wells, number of samples	• sample taking	
 available wells/ construction of new wells 	 field measurements, if 	• costs (INCORE 2003)		
• legal permits	necessary			
preliminary investigation		preparation	performance	interpretation

3. Application

Many tools are available to calculate a spatial distribution of contamination and total load.

- available tools for IPTs evaluation
 - IPV- Tool [Rothschink, 2007]
 - → www.lubw.baden-wuerttemberg.de
 - MAGIC software tool [Ertel et al., 2008]
 - → www.magic-cadses.com
 - C-SET [Huss, 2012]
 - → www.lubw.baden-wuerttemberg.de
 - CSTREAM analytic [Bayer-Raich et al., 2003]
 - → www.ufz.de/task
 - CSTREAM numerical [Bayer-Raich et al., 2003]
 - → www.ufz.de/task
 - different numerical models

simple methods

numerical methods

3. Application

Generally, IPTs are applicable without technical limitations, but the range of the parameters shall be verified.

- Parameter range of applications
 - hydraulic conductivity [m/s]

10⁻⁶ 10⁻²

- water head in pumping well high enough to enable a sufficient drawdown
- GW flow direction cannot be determined in the case of smooth hydraulic gradients
- plume lengths [Teutsch et al., 1997]

PAH 300 m
BTEX 420 m
CHC

STUTTGART

2150 m

- 1. Challenge
- 2. Approach
- 3. Application
- 4. Case Study
- 5. Conclusions

4. Case Study

District Hohenlohe has successfully implemented IPT method.

- brownfield is former industrial company, metal working
- the contaminated site is located in quaternary, valley deposits
- after GW remediation measured CHC concentrations reached 6.000 μg/l
- it was decided to implement IPT for investigation:
 - control plane was defined along the property boundary
 - 96-hours pumping tests were performed in 3 GW wells
 - 6 samples were taken for each IPT

4. Case Study

Almost 100 % of the contaminated plume was covered, which allowed precise determination of complex plume geometry.

- 1. Challenge
- 2. Approach
- 3. Application
- 4. Case Study
- 5. Conclusions

5. Conclusions

- There is extensive experience in practice for implementation of IPTs
- IPTs have no technical limitations and can be used for soils with wide range of parameters
- IPTs allow reliable and fast determination of a total contaminated load, average concentration and possible contamination distribution
 - analytical tools for simple cases and uniform aquifers
 - numerical tools for more complicated cases
- IPTs are at high stage of development and represent powerful tool to investigate source – plume interactions in the groundwater

Thank you for your attention.

References

- (1) Ertel & Schollengerger [2008] MAGIC Handbook for Integral Groundwater Investigation, Polish Geological Institute, Warsaw, Poland
- (2) Holder & Teutsch [1999] Bestimmung der Schadstoffimmission im Grundwasser Verfahrensprinzip, Messung und Modellierung, in *Integrale Altlastenerkundung im Neckartal Stuttgart*, Amt für Umweltschutz- Heft 4/1999, Stuttgart, Germany
- (3) Leschik, Musolff, Krieg, Martienssen, Bayer-Raich, Reinstorf, Strauch, Schirmer [2009] Application of integral pumping tests to investigate the influence of a losing stream on groundwater quality, Hydrology and Earth System Sciences Discussions, p. 4210-4232
- (4) Ptak & Kirchholtes [not published] Grundwasserabstromerkundung mittels Immissionspumpversuchen, altlastenforum Baden-Württemberg e.V., Stuttgart, Germany

