

Passive samplers as an innovative way for groundwater quality monitoring

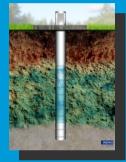
Julien Michel / Marie Lemoine / Pauline Molina / Francis Guillot / Fabrice Richez

Contents of the presentation

Context of the study and <u>definition</u> of passive sampling

Experiments on site: design of the tests

Recommendations for the use of passive samplers for groundwater quality measurement


Context of the study

Overall goal of groundwater sampling

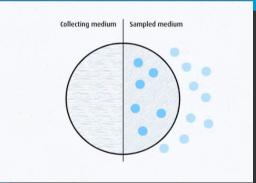
to get a « representative » sample (as regard to the groundwater quality near the sampling point)

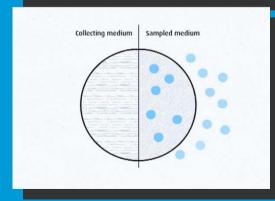
In general (conventional sampling method)

- → Time consuming, large volume of water to be treated, average concentration (weighted by the flow)
- → How to sample groundwater without purging the well and to get a representative sample?

Passive samplers

- Groundwater: "one that is able to acquire a sample from a discrete location or interval in a well without the active transport associated with a pump or purge technique" (ITRC, 2007)
- When no vertical flow in the well: depth discrete sampling possible



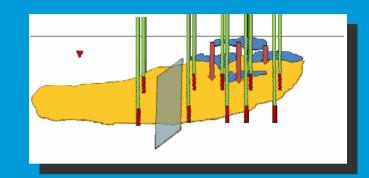

Passive sampling - Definitions

3 kinds of passive samplers

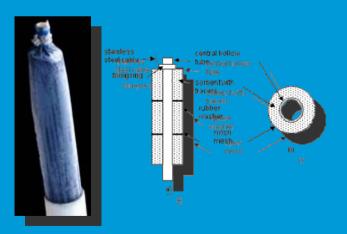
- ◆ Grab samplers: sample recovered is an instantaneous representation of conditions at the sampling point, at the time of sample collection, without purging
- ◆ <u>Diffusion samplers</u>: compounds of interest reach and maintain equilibrium via diffusion through a membrane (sample is an instantaneous representation of the conditions at the time of sampler retrieval, at the sampling point)
- ◆ Integrative samplers: rely on diffusion and sorption of the contaminants which accumulates in the sampler (results are an average concentration of the contaminant over the exposure time)

Tests on passive samplers

> Design of the tests

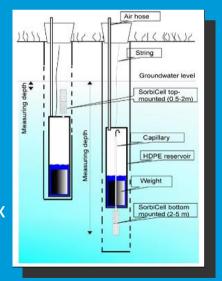


Tests on a pilot site


Pilot project "Utrecht"

Passive flux measurement (mass per unit time per area)

- concentrations in groundwater
- flow rate
- surface area through which contaminants flow
- combination of time-average concentration, flow rate and flow direction


3 passive samplers

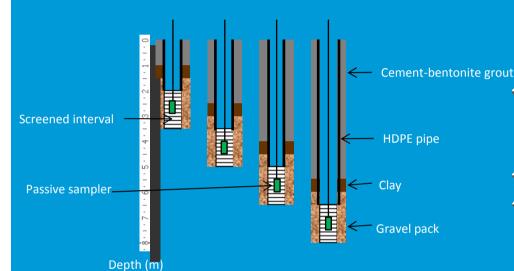
SorbiFlux

Used to calculate the flux

Passive flux meter (PFM)

Flux directly measured

SorbiCell


Used to calculate the flux

Tests on a pilot site

Pilot project "lle de France"

- Groundwater: contamination with HVOC and trace metals
- ◆ 4 dedicated wells

Concentration ranges :

PCE: $60 - 4\,000\,\mu\text{g/L}$; TCE: $80 - 1\,800\,\mu\text{g/L}$

Cis-DCE: $4500 - 8000 \mu g/L$; VC: $100 - 4000 \mu g/L$

- ◆ Comparison with the pump, reproducibility
- ◆ One sampler in the middle of each screened interval

4 passive samplers

Dialysis membrane

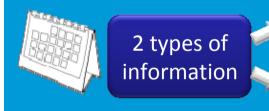
Ceramic dosimeter

Gore Sorber Module

Recommendations

- > Passive sampler selection
- > Passive sampler set up
- > Data interpretation

for groundwater quality measurement



Passive sampler selection

On a site already characterized (e.g. groundwater monitoring)

evolution of contaminant concentration over space and time

Aim of the monitoring in time

Average concentration of contaminants over time

specificity of passive samplers

Instantaneous concentration at the time of the sampling

Grab or diffusion samplers

Aim of the monitoring in space

- → Vertical distribution
- → Concentration at the surface of the water table
- → Monitoring of a plume migration
- Using passive samplers as warning points

Grab, diffusion or integrative samplers (aim of the monitoring in time)

Integrative samplers in general

Compounds to monitor

most of passive samplers: contaminant-specific

Passive sampler set up

General installation and retrieval: knowledge of the monitoring network

borehole diameter, screened interval position and length, variation of the groundwater level over time

Type of samples to collect: knowledge of the local hydrogeology

- ◆ Natural vertical flow in the well (especially for depth discrete or multi level sampling)
- ◆ Water production of soil horizon

Exposure time: passive sampler type and concentration ranges

- ◆ Diffusion samplers: equilibrium should be achieved and system back to "normal" conditions
- ◆ Integrative samplers: long enough to reach the quantitation limit of the analytical method, not too
- long in order not to saturate the adsorbent
- given by the manufacturer

Number and position of passive samplers

- ◆ Screened intervals < 1.5 m: in the middle of the screened interval
- ◆ Screened intervals > 1.5 m: measurement of natural vertical flows
 - natural vertical flows: depth discrete sampling not possible / sampler anywhere in front of the screened interval

Data interpretation

Side by side comparison test with the conventional sampling technique for a given well (at least at the beginning)

Passive sampling prior to conventional sampling (to avoid disturbances in the well)

Sometimes results different

- ◆ Different principles of operation / sometimes access to different information
- ◆ For example, if concentrations given by passive samplers > concentrations from pumping
 - passive samplers at the most contaminated level
 - for integrative samplers, sampling with the pump when contaminant mass flux is lower

Conclusions

Main advantages

- **Easy** and quick to install and retrieve
- No external energy source or additional equipment
- No cross contamination
- More cost-effective than conventional sampling in general
- Depth discrete sampling possible, appropriate when access is difficult or discretion desirable, no depth limit

Main limitations of passive sampling

- When different pollutant classes on site: different samplers needed (except dialysis membrane:
 HVOC and metals)
- Good knowledge of hydrogeological conditions at the sampling point needed

Outputs of the CityChlor project concerning passive sampling

- Movie presenting passive sampling for groundwater
- Guideline on the use of passive samplers for groundwater quality measurement:
 recommendations on how to use passive samplers for groundwater quality measurement
- Site report "lle de France" and report "Integration of results, CSM Bio-washing machine": description of the tests on passive samplers

Observed in the field!

Thank you for your attention